Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 21(4): 480-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26033241

RESUMO

Endoplasmic reticulum (ER) release and cell-surface export of many G protein-coupled receptors (GPCRs) are tightly regulated. For gamma-aminobutyric acid (GABA)B receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell-surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gatekeepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Subunidades Proteicas , Ácido gama-Aminobutírico/metabolismo
2.
Transl Psychiatry ; 5: e510, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25689571

RESUMO

Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, is fundamental to brain function and implicated in the pathophysiology of several neuropsychiatric disorders. GABA activates G-protein-coupled GABAB receptors comprising principal GABAB1 and GABAB2 subunits as well as auxiliary KCTD8, 12, 12b and 16 subunits. The KCTD12 gene has been associated with bipolar disorder, major depressive disorder and schizophrenia. Here we compare Kctd12 null mutant (Kctd12(-/-)) and heterozygous (Kctd12(+/-)) with wild-type (WT) littermate mice to determine whether lack of or reduced KCTD12 expression leads to phenotypes that, extrapolating to human, could constitute endophenotypes for neuropsychiatric disorders with which KCTD12 is associated. Kctd12(-/-) mice exhibited increased fear learning but not increased memory of a discrete auditory-conditioned stimulus. Kctd12(+/-) mice showed increased activity during the inactive (light) phase of the circadian cycle relative to WT and Kctd12(-/-) mice. Electrophysiological recordings from hippocampal slices, a region of high Kctd12 expression, revealed an increased intrinsic excitability of pyramidal neurons in Kctd12(-/-) and Kctd12(+/-) mice. This is the first direct evidence for involvement of KCTD12 in determining phenotypes of emotionality, behavioral activity and neuronal excitability. This study provides empirical support for the polymorphism and expression evidence that KCTD12 confers risk for and is associated with neuropsychiatric disorders.


Assuntos
Comportamento Animal , Emoções , Hipocampo/metabolismo , Aprendizagem , Receptores de GABA/genética , Animais , Ritmo Circadiano/genética , Medo , Heterozigoto , Memória , Camundongos , Camundongos Knockout , Atividade Motora
3.
Life Sci ; 92(3): 175-82, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23178152

RESUMO

AIMS: We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. MAIN METHODS: Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor ß subunit (IRß), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. KEY FINDINGS: Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRß, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. SIGNIFICANCE: Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus.


Assuntos
Resistência à Insulina , Receptores de GABA-B , Caracteres Sexuais , Animais , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica/genética , Glucagon/genética , Glucagon/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Insulina/genética , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
4.
Cell Death Dis ; 3: e325, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22717580

RESUMO

Recent studies identified a highly tumorigenic subpopulation of glioma stem cells (GSCs) within malignant gliomas. GSCs are proposed to originate from transformed neural stem cells (NSCs). Several pathways active in NSCs, including the Notch pathway, were shown to promote proliferation and tumorigenesis in GSCs. Notch2 is highly expressed in glioblastoma multiforme (GBM), a highly malignant astrocytoma. It is therefore conceivable that increased Notch2 signaling in NSCs contributes to the formation of GBM. Here, we demonstrate that mice constitutively expressing the activated intracellular domain of Notch2 in NSCs display a hyperplasia of the neurogenic niche and reduced neuronal lineage entry. Neurospheres derived from these mice show increased proliferation, survival and resistance to apoptosis. Moreover, they preferentially differentiate into astrocytes, which are the characteristic cellular population of astrocytoma. Likewise, we show that Notch2 signaling increases proliferation and resistance to apoptosis in human GBM cell lines. Gene expression profiling of GBM patient tumor samples reveals a positive correlation of Notch2 transcripts with gene transcripts controlling anti-apoptotic processes, stemness and astrocyte fate, and a negative correlation with gene transcripts controlling proapoptotic processes and oligodendrocyte fate. Our data show that Notch2 signaling in NSCs produces features of GSCs and induces astrocytic lineage entry, consistent with a possible role in astrocytoma formation.


Assuntos
Astrócitos/metabolismo , Transformação Celular Neoplásica/patologia , Células-Tronco Neurais/metabolismo , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Astrócitos/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem da Célula , Transformação Celular Neoplásica/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neurais/patologia , Receptor Notch2/genética
5.
Am J Physiol Endocrinol Metab ; 294(1): E157-67, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17971510

RESUMO

GABA has been proposed to inhibit insulin secretion through GABAB receptors (GABABRs) in pancreatic beta-cells. We investigated whether GABABRs participated in the regulation of glucose homeostasis in vivo. The animals used in this study were adult male and female BALB/C mice, mice deficient in the GABAB1 subunit of the GABABR (GABAB(-/-)), and wild types (WT). Blood glucose was measured under fasting/fed conditions and in glucose tolerance tests (GTTs) with a Lifescan Glucose meter, and serum insulin was measured by ELISA. Pancreatic insulin content and islet insulin were released by RIA. Western blots for the GABAB1 subunit in islet membranes and immunohistochemistry for insulin and GABAB1 were performed in both genotypes. BALB/C mice preinjected with Baclofen (GABABR agonist, 7.5 mg/kg ip) presented impaired GTTs and decreased insulin secretion compared with saline-preinjected controls. GABAB(-/-) mice showed fasting and fed glucose levels similar to WT. GABAB(-/-) mice showed improved GTTs at moderate glucose overloads (2 g/kg). Baclofen pretreatment did not modify GTTs in GABAB(-/-) mice, whereas it impaired normal glycemia reinstatement in WT. Baclofen inhibited glucose-stimulated insulin secretion in WT isolated islets but was without effect in GABAB(-/-) islets. In GABAB(-/-) males, pancreatic insulin content was increased, basal and glucose-stimulated insulin secretion were augmented, and impaired insulin tolerance test and increased homeostatic model assessment of insulin resistance index were determined. Immunohistochemistry for insulin demonstrated an increase of very large islets in GABAB(-/-) males. Results demonstrate that GABABRs are involved in the regulation of glucose homeostasis in vivo and that the constitutive absence of GABABRs induces alterations in pancreatic histology, physiology, and insulin resistance.


Assuntos
Glicemia/metabolismo , Homeostase/fisiologia , Ilhotas Pancreáticas/fisiologia , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Animais , Baclofeno/farmacologia , Western Blotting , Células Cultivadas , Feminino , Agonistas GABAérgicos/farmacologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Intolerância à Glucose/fisiopatologia , Imuno-Histoquímica , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
6.
Neuroscience ; 138(4): 1277-87, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16427742

RESUMO

Loss of GABA-mediated inhibition in the spinal cord is thought to mediate allodynia and spontaneous pain after nerve injury. Despite extensive investigation of GABA itself, relatively little is known about how nerve injury alters the receptors at which GABA acts. This study examined levels of GABA(B) receptor protein in the spinal cord dorsal horn, and in the L4 and L5 (lumbar designations) dorsal root ganglia one to 18 weeks after L5 spinal nerve ligation. Mechanical allodynia was maximal by 1 week and persisted at blunted levels for at least 18 weeks after injury. Spontaneous pain behaviors were evident for 6 weeks. Western blotting of dorsal horn detected two isoforms of the GABA(B(1)) subunit and a single GABA(B(2)) subunit. High levels of GABA(B(1a)) and low levels of GABA(B(1b)) protein were present in the dorsal root ganglia. However, GABA(B(2)) protein was not detected in the dorsal root ganglia, consistent with the proposed existence of an atypical receptor composed of GABA(B(1)) homodimers. The levels of GABA(B(1a)), GABA(B(1b)), and GABA(B(2)) protein in the ipsilateral dorsal horn were unchanged at any time after injury. Immunohistochemical staining also did not detect a change in GABA(B(1)) or GABA(B(2)) subunits in dorsal horn segments having a robust loss of isolectin B4 staining. The levels of GABA(B(1a)) protein were also unchanged in the L4 or L5 dorsal root ganglia at any time after spinal nerve ligation. Levels of GABA(B(2)) remained undetectable. Finally, baclofen-stimulated binding of guanosine-5'-(gamma-O-thio)triphosphate in dorsal horn did not differ between sham and ligated rats. Collectively, these results argue that a loss of GABA(B) receptor-mediated inhibition, particularly of central terminals of primary afferents, is unlikely to mediate the development or maintenance of allodynia or spontaneous pain behaviors after spinal nerve injury.


Assuntos
Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos , Nervos Periféricos/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Células do Corno Posterior/metabolismo , Receptores de GABA-B/metabolismo , Animais , Baclofeno/farmacologia , Denervação , Modelos Animais de Doenças , Agonistas GABAérgicos/farmacologia , Gânglios Espinais/citologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Ligadura , Masculino , Inibição Neural/fisiologia , Neuralgia/fisiopatologia , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células do Corno Posterior/citologia , Terminações Pré-Sinápticas/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Regulação para Cima/fisiologia , Ácido gama-Aminobutírico/metabolismo
7.
Pharmacol Rev ; 54(2): 247-64, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12037141

RESUMO

The gamma-aminobutyric acid(B) (GABA(B)) receptor was first demonstrated on presynaptic terminals where it serves as an autoreceptor and also as a heteroreceptor to influence transmitter release by suppressing neuronal Ca(2+) conductance. Subsequent studies showed the presence of the receptor on postsynaptic neurones where activation produces an increase in membrane K(+) conductance and associated neuronal hyperpolarization. (-)-Baclofen is a highly selective agonist for GABA(B) receptors, whereas the established GABA(A) receptor antagonists, bicuculline and picrotoxin, do not block GABA(B) receptors. The receptor is G(i)/G(o) protein-coupled with mixed effects on adenylate cyclase activity. The receptor comprises a heterodimer with similar subunits currently designated 1 and 2. These subunits are coupled via coiled-coil domains at their C termini. The evidence for splice variants is critically reviewed. Thus far, no unique pharmacological or functional properties have been assigned to either subunit or the variants. The emergence of high-affinity antagonists for GABA(B) receptors has enabled a synaptic role to be established. However, the antagonists have generally failed to establish the existence of pharmacologically distinct receptor types within the GABA(B) receptor class. The advent of GABA(B1) knockout mice has also failed to provide support for multiple receptor types.


Assuntos
Receptores de GABA-B/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Agonistas GABAérgicos/química , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Agonistas dos Receptores de GABA-B , Antagonistas de Receptores de GABA-B , Humanos , Agências Internacionais
8.
Mol Pharmacol ; 60(5): 963-71, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11641424

RESUMO

The compounds CGP7930 [2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol] and its close analog CGP13501 were identified as positive modulators of gamma-aminobutyric acid(B) (GABA(B)) receptor function. They potentiate GABA-stimulated guanosine 5'-O-(3-[(35)S]thiotriphosphate) (GTP gamma[(35)S]) binding to membranes from a GABA(B(1b/2)) expressing Chinese hamster ovary (CHO) cell line at low micromolar concentrations and are ineffective in the absence of GABA. The structurally related compounds propofol and malonoben are inactive. Similar effects of CGP7930 are seen in a GTP gamma[(35)S] binding assay using a native GABA(B) receptor preparation (rat brain membranes). Receptor selectivity is demonstrated because no modulation of glutamate-induced GTP gamma[(35)S] binding is seen in a CHO cell line expressing the metabotropic glutamate receptor subtype 2. Dose-response curves with GABA in the presence of different fixed concentrations of CGP7930 reveal an increase of both the potency and maximal efficacy of GABA at the GABA(B(1b/2)) heteromer. Radioligand binding studies show that CGP7930 increases the affinity of agonists but acts at a site different from the agonist binding site. Agonist affinity is not modulated by CGP7930 at homomeric GABA(B(1b)) receptors. In addition to GTP gamma[(35)S] binding, we show that CGP7930 also has modulatory effects in cellular assays such as GABA(B) receptor-mediated activation of inwardly rectifying potassium channels in Xenopus laevis oocytes and Ca(2+) signaling in human embryonic kidney 293 cells. Furthermore, we show that CGP7930 enhances the inhibitory effect of L-baclofen on the oscillatory activity of cultured cortical neurons. This first demonstration of positive allosteric modulation at GABA(B) receptors may represent a novel means of therapeutic interference with the GABA-ergic system.


Assuntos
Agonistas GABAérgicos/farmacologia , Fenóis/farmacologia , Receptores de GABA-B/metabolismo , Regulação Alostérica , Processamento Alternativo , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Cricetinae , Agonistas dos Receptores de GABA-B , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de GABA-B/genética , Proteínas Recombinantes/metabolismo
9.
Neuron ; 31(1): 47-58, 2001 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-11498050

RESUMO

GABA(B) (gamma-aminobutyric acid type B) receptors are important for keeping neuronal excitability under control. Cloned GABA(B) receptors do not show the expected pharmacological diversity of native receptors and it is unknown whether they contribute to pre- as well as postsynaptic functions. Here, we demonstrate that Balb/c mice lacking the GABA(B(1)) subunit are viable, exhibit spontaneous seizures, hyperalgesia, hyperlocomotor activity, and memory impairment. Upon GABA(B) agonist application, null mutant mice show neither the typical muscle relaxation, hypothermia, or delta EEG waves. These behavioral findings are paralleled by a loss of all biochemical and electrophysiological GABA(B) responses in null mutant mice. This demonstrates that GABA(B(1)) is an essential component of pre- and postsynaptic GABA(B) receptors and casts doubt on the existence of proposed receptor subtypes.


Assuntos
Epilepsia/genética , Hiperalgesia/genética , Transtornos da Memória/genética , Memória/fisiologia , Neurônios/fisiologia , Receptores de GABA-B/fisiologia , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/fisiologia , Baclofeno/farmacologia , Regulação da Temperatura Corporal , Ritmo Delta/efeitos dos fármacos , Epilepsia/fisiopatologia , Agonistas GABAérgicos/farmacologia , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Hiperalgesia/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Dor/fisiopatologia , Técnicas de Patch-Clamp , Subunidades Proteicas , Receptores de GABA-B/deficiência , Receptores de GABA-B/genética
10.
EMBO J ; 20(9): 2152-9, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11331581

RESUMO

Recent studies on G-protein-coupled receptors revealed that they can dimerize. However, the role of each subunit in the activation process remains unclear. The gamma-amino-n-butyric acid type B (GABA(B)) receptor is comprised of two subunits: GB1 and GB2. Both consist of an extracellular domain (ECD) and a heptahelical domain composed of seven transmembrane alpha-helices, loops and the C-terminus (HD). Whereas GB1 ECD plays a critical role in ligand binding, GB2 is required not only to target GB1 subunit to the cell surface but also for receptor activation. Here, by analysing chimeric GB subunits, we show that only GB2 HD contains the determinants required for G-protein signalling. However, the HD of GB1 improves coupling efficacy. Conversely, although GB1 ECD is sufficient to bind GABA(B) ligands, the ECD of GB2 increases the agonist affinity on GB1, and is necessary for agonist activation of the receptor. These data indicate that multiple allosteric interactions between the two subunits are required for wild-type functioning of the GABA(B) receptor and highlight further the importance of the dimerization process in GPCR activation.


Assuntos
Subunidades Proteicas , Receptores de GABA-B/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Linhagem Celular , Dimerização , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Rim/citologia , Rim/metabolismo , Ligantes , Estrutura Terciária de Proteína/fisiologia , Receptores de GABA-B/genética , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade , Transfecção
11.
Farmaco ; 56(1-2): 101-5, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11347948

RESUMO

Outlined is the rationale behind the syntheses of radioligands [125I]CGP64213 and [125I]CGP71872, which led to the identification of cloned GABA(B) receptors 1a and 1b 17 years after the first pharmacological characterisation of native GABA(B) receptors by Bowery et al. [Nature 283 (1980) 92-94]. More recently it was shown that the N-terminal extracellular domains of GABA(B) receptors 1a and 1b contain the binding sites for agonists and antagonists [B. Malitschek et al., Mol. Pharmacol. 56 (1999) 448-454]. In order to isolate the extracellular domain(s) of GABA(B) receptors 1a (or 1b) and to purify and crystallise these proteins a third ligand [125I]CGP84963 was designed, which combines, in one molecule, a GABA(B) receptor binding part, an azidosalicylic acid as photoaffinity moiety and 2-iminobiotin, which binds to avidin in a reversible, pH-dependent fashion [W. Froestl et al., Neuropharmacology 38 (1999) 1641-1646].


Assuntos
Receptores de GABA-B/metabolismo , Animais , Clonagem Molecular , Humanos , Ligantes , Receptores de GABA-B/genética , Receptores de GABA-B/isolamento & purificação , Relação Estrutura-Atividade
12.
J Comp Neurol ; 431(2): 182-97, 2001 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11169999

RESUMO

Although studies in the visual cortex have found gamma-aminobutyric acid B (GABA(B)) receptor-mediated pre- and postsynaptic inhibitory effects on neurons, the subcellular localization of GABA(B) receptors in different types of cortical neurons and synapses has not been shown directly. To provide this information, we have used antibodies against the GABA(B) receptor (R)1a/b and GABA(B)R2 subunits and have studied the localization of immunoreactivities in rat visual cortex. Light microscopic analyses have shown that both subunits are expressed in cell bodies and dendrites of 65-92% of corticocortically projecting pyramidal neurons and in 92-100% of parvalbumin (PV)-, calretinin (CR)-, and somatostatin (SOM)-containing GABAergic neurons. Electron microscopic analyses of immunoperoxidase- and immunogold-labeled tissue revealed staining in the nucleus, cytoplasm and cell surface membranes with both antibodies. Colocalization of both subunits was observed in all of these structures. GABA(B)R1a/b and GABA(B)R2 were concentrated in excitatory and inhibitory synapses and in extrasynaptic membranes. In GABAergic synapses, GABA(B)R1a/b and GABA(B)R2 were more strongly expressed postsynaptically on pyramidal and nonpyramidal cells than presynaptically. In type 1 synapses GABA(B)R1a/b and GABA(B)R2 was found in pre- and postsynaptic membranes. The nuclear localization of GABA(B)R1 and GABA(B)R2 subunits suggests a novel role for neurotransmitter receptors in controlling gene expression. The synaptic colocalization of GABA(B)R1 and GABA(B)R2 indicates that subunits form heteromeric assemblies of the functional receptor in inhibitory and excitatory synapses. Subunit coexpression in GABAergic synapses that include PV-containing and PV-deficient terminals suggests that pre- and postsynaptic GABA(B) receptor activation is provided by several different types of interneurons. The coexpression of both subunits in excitatory synapses suggests a role for GABA(B) receptors in the regulation of glutamate release and raises the question how these receptors are activated in the absence of pre-or postsynaptic GABAergic synaptic inputs to excitatory synapses.


Assuntos
Neurônios/metabolismo , Ratos Long-Evans/metabolismo , Receptores de GABA-B/metabolismo , Córtex Visual/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Imuno-Histoquímica , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Microscopia Eletrônica , Inibição Neural/fisiologia , Neurônios/ultraestrutura , Organelas/metabolismo , Organelas/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Ratos , Ratos Long-Evans/anatomia & histologia , Receptores de GABA/metabolismo , Receptores de GABA-B/química , Córtex Visual/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 21(4): 1189-202, 2001 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11160389

RESUMO

Assembly of fully functional GABA(B) receptors requires heteromerization of the GABA(B(1)) and GABA(B(2)) subunits. It is thought that GABA(B(1)) and GABA(B(2)) undergo coiled-coil dimerization in their cytoplasmic C termini and that assembly is necessary to overcome GABA(B(1)) retention in the endoplasmatic reticulum (ER). We investigated the mechanism underlying GABA(B(1)) trafficking to the cell surface. We identified a signal, RSRR, proximal to the coiled-coil domain of GABA(B(1)) that when deleted or mutagenized allows for surface delivery in the absence of GABA(B(2)). A similar motif, RXR, was recently shown to function as an ER retention/retrieval (ERR/R) signal in K(ATP) channels, demonstrating that G-protein-coupled receptors (GPCRs) and ion channels use common mechanisms to control surface trafficking. A C-terminal fragment of GABA(B(2)) is able to mask the RSRR signal and to direct the GABA(B(1)) monomer to the cell surface, where it is functionally inert. This indicates that in the heteromer, GABA(B(2)) participates in coupling to the G-protein. Mutagenesis of the C-terminal coiled-coil domains in GABA(B(1)) and GABA(B(2)) supports the possibility that their interaction is involved in shielding the ERR/R signal. However, assembly of heteromeric GABA(B) receptors is possible in the absence of the C-terminal domains, indicating that coiled-coil interaction is not necessary for function. Rather than guaranteeing heterodimerization, as previously assumed, the coiled-coil structure appears to be important for export of the receptor complex from the secretory apparatus.


Assuntos
Membrana Celular/metabolismo , Rim/metabolismo , Neurônios/metabolismo , Transporte Proteico/fisiologia , Receptores de GABA-B/metabolismo , Motivos de Aminoácidos/fisiologia , Cálcio/metabolismo , Linhagem Celular , Dimerização , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Imuno-Histoquímica , Rim/citologia , Mutagênese Sítio-Dirigida , Neurônios/citologia , Marcadores de Fotoafinidade/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas , Receptores de GABA-B/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia
14.
Neuropharmacology ; 40(2): 185-92, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11114397

RESUMO

gamma-Aminobutyric acid (GABA) is involved in the neuroendocrine control of hypophyseal secretion, acting both in the central nervous system and directly at the pituitary. We have characterized the properties of anterior pituitary GABA(B) receptors. In this work the ontogeny of rat anterior pituitary GABA(B) receptors and the pattern of subunit expression in rats of both sexes were determined. Western blot analysis showed a temporal decrease in GABA(B) subunits GABA(B(1a)) and GABA(B(1b)) expression in female anterior pituitary membranes from day 4 to adulthood, with GABA(B(1a)) being significantly more abundant than GABA(B(1b)) at early stages of development; the GABA(B(2)) subunit was barely detectable. In the male, GABA(B(1a)) followed a similar pattern and appeared to be significantly less abundant than in 4- and 12-day-old females; GABA(B(1b)) and GABA(B(2)) expression in the male was barely detectable. Scatchard plot analysis showed a temporal decrease in binding sites in female anterior pituitary membranes, in agreement with the western blot results. The number of binding sites was significantly higher in female than in male 4-day-old membranes. Dissociation constant values were similar for both sexes at all ages studied. This study reports for the first time the ontogeny of anterior pituitary GABA(B) receptors, showing a particular developmental pattern of subunit expression and a clear sexual dimorphism.


Assuntos
Adeno-Hipófise/metabolismo , Receptores de GABA-B/metabolismo , Animais , Western Blotting , Feminino , Masculino , Adeno-Hipófise/crescimento & desenvolvimento , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley
15.
Eur J Neurosci ; 12(9): 3201-10, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10998104

RESUMO

The presence of metabotropic receptors for GABA, GABAB, on primary afferent terminals in mammalian spinal cord has been previously reported. In this study we provide further evidence to support this in the rat and show that the GABAB receptor subunits GABAB1 and GABAB2 mRNA and the corresponding subunit proteins are present in the spinal cord and dorsal root ganglion. We also show that the predominant GABAB1 receptor subunit mRNA present in the afferent fibre cell body appears to be the 1a form. In frozen sections of lumbar spinal cord and dorsal root ganglia (DRG) GABAB receptors were labelled with [3H]CGP 62349 or the sections postfixed with paraformaldehyde and subjected to in situ hybridization using oligonucleotides designed to selectively hybridize with the mRNA for GABAB(1a), GABAB(1b) or GABAB2. For immunocytochemistry (ICC), sections were obtained from rats anaesthetized and perfused-fixed with paraformaldehyde. The distribution of binding sites for [3H]CGP 62349 mirrored that previously observed with [3H]GABA at GABAB sites. The density of binding sites was high in the dorsal horn but much lower in the ventral regions. By contrast, the density of mRNA (pan) was more evenly distributed across the laminae of the spinal cord. The density of mRNA detected with the pan probe was high in the DRG and distributed over the neuron cell bodies. This would accord with GABAB receptor protein being formed in the sensory neurons and transported to the primary afferent terminals. Of the GABAB1 mRNA in the DRG, approximately 90% was of the GABAB(1a) form and approximately 10% in the GABAB(1b) form. This would suggest that GABAB(1a) mRNA may be responsible for encoding presynaptic GABAB receptors on primary afferent terminals in a manner similar to that we have previously observed in the cerebellar cortex. GABAB2 mRNA was also evenly distributed across the spinal cord laminae at densities equivalent to those of GABAB1 in the dorsal horn. GABAB2 mRNA was also detected to the same degree within the DRG. Immunocytochemical analysis revealed that GABAB(1a), GABAB(1b) and GABAB2 were all present in the spinal cord. GABAB(1a) labelling appeared to be more dense than GABAB(1b) and within the superficial dorsal horn GABAB(1a) was present in the neuropil whereas GABAB(1b) was associated with cell bodies in this region. Both 1a and 1b immunoreactivity was expressed in motor neurons in lamina IX. GABAB2 immunoreactivity was expressed throughout the spinal cord and was evident within the neuropil of the superficial laminae.


Assuntos
Gânglios Espinais/fisiologia , Receptores de GABA-B/genética , Medula Espinal/fisiologia , Animais , Baclofeno/farmacologia , Benzoatos/farmacologia , Dimerização , Agonistas GABAérgicos/farmacologia , Gânglios Espinais/química , Expressão Gênica/fisiologia , Hibridização In Situ , Isomerismo , Masculino , Compostos Organofosforados/farmacologia , RNA Mensageiro/análise , Ensaio Radioligante , Ratos , Receptores de GABA-B/análise , Receptores de GABA-B/química , Receptores Pré-Sinápticos/análise , Receptores Pré-Sinápticos/química , Receptores Pré-Sinápticos/genética , Medula Espinal/química , Trítio
16.
J Biol Chem ; 275(52): 41166-74, 2000 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-10986293

RESUMO

The gamma-amino-n-butyric acid type B (GABA(B)) receptor is composed of two subunits, GABA(B)1 and GABA(B)2, belonging to the family 3 heptahelix receptors. These proteins possess two domains, a seven transmembrane core and an extracellular domain containing the agonist binding site. This binding domain is likely to fold like bacterial periplasmic binding proteins that are constituted of two lobes that close upon ligand binding. Here, using molecular modeling and site-directed mutagenesis, we have identified residues in the GABA(B)1 subunit that are critical for agonist binding and activation of the heteromeric receptor. Our data suggest that two residues (Ser(246) and Asp(471)) located within lobe I form H bonds and a salt bridge with carboxylic and amino groups of GABA, respectively, demonstrating the pivotal role of lobe I in agonist binding. Interestingly, our data also suggest that a residue within lobe II (Tyr(366)) interacts with the agonists in a closed form model of the binding domain, and its mutation into Ala converts the agonist baclofen into an antagonist. These data demonstrate the pivotal role played by the GABA(B)1 subunit in the activation of the heteromeric GABA(B) receptor and are consistent with the idea that a closed state of the binding domain of family 3 receptors is required for their activation.


Assuntos
Agonistas GABAérgicos/metabolismo , Receptores de GABA-B/química , Sequência de Aminoácidos , Baclofeno/metabolismo , Sítios de Ligação , Células Cultivadas , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas , Receptores de GABA-B/metabolismo , Relação Estrutura-Atividade , Ácido gama-Aminobutírico/metabolismo
17.
Proc Natl Acad Sci U S A ; 97(15): 8664-9, 2000 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-10900022

RESUMO

gamma-Hydroxybutyrate (GHB), an anesthetic adjuvant analog of gamma-aminobutyrate (GABA), depresses cell excitability in hippocampal neurons by inducing hyperpolarization through the activation of a prominent inwardly rectifying K(+) (Kir3) conductance. These GABA type B (GABA(B))-like effects are clearly shown at high concentrations of GHB corresponding to blood levels usually reached during anesthesia and are mimicked by the GABA(B) agonist baclofen. Recent studies of native GABA(B) receptors (GABA(B)Rs) have favored the concept that GHB is also a selective agonist. Furthermore, cloning has demonstrated that GABA(B)Rs assemble heteromeric complexes from the GABA(B)R1 and GABA(B)R2 subtypes and that these assemblies are activated by GHB. The surprisingly high tissue content, together with anti-ischemic and protective effects of GHB in the heart, raises the question of a possible influence of GABA(B) agonists on excitable cardiac cells. In the present study, we provide electrophysiological evidence that GHB activates an inwardly rectifying K(+) current in rat ventricular myocytes. This effect is mimicked by baclofen, reversibly inhibited by GABA(B) antagonists, and prevented by pertussis toxin pretreatment. Both GABA(B)R1 and GABA(B)R2 are detected in cardiomyocytes by Western blotting and are shown to coimmunoprecipitate. Laser scanning confocal microscopy discloses an even distribution of the two receptors in the sarcolemma and along the transverse tubular system. Hence, we conclude that GABA(B)Rs are distributed not only in neuronal tissues but also in the heart, where they can be activated and induce electrophysiological alterations through G-protein-coupled inward rectifier potassium channels.


Assuntos
Miocárdio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de GABA-B/fisiologia , Adjuvantes Anestésicos/farmacologia , Animais , Baclofeno/farmacologia , Células Cultivadas , Eletrofisiologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Expressão Gênica , Ventrículos do Coração , Mamíferos , Compostos Organofosforados/farmacologia , Canais de Potássio/fisiologia , RNA Mensageiro , Ratos , Ratos Wistar , Receptores de GABA-B/biossíntese , Receptores de GABA-B/genética , Oxibato de Sódio/farmacologia
18.
Mol Pharmacol ; 57(3): 419-26, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10692480

RESUMO

The gamma-aminobutyric acid (GABA) receptor type B (GABA(B)R) is constituted of at least two homologous proteins, GABA(B)R1 and GABA(B)R2. These proteins share sequence and structural similarity with metabotropic glutamate and Ca(2+)-sensing receptors, both of which are sensitive to Ca(2+). Using rat brain membranes, we report here that the affinity of GABA and 3-aminopropylphosphinic acid for the GABA(B)R receptor is decreased by a factor >10 in the absence of Ca(2+). Such a large effect of Ca(2+) is not observed with baclofen or the antagonists CGP64213 and CGP56999A. In contrast to baclofen, the potency of GABA in stimulating GTPgammaS binding in rat brain membranes is also decreased by a factor >10 upon Ca(2+) removal. The potency for Ca(2+) in regulating GABA affinity was 37 microM. In cells expressing GABA(B)R1, the potency of GABA, but not of baclofen, in displacing bound (125)I-CGP64213 was similarly decreased in the absence of Ca(2+). To identify residues that are responsible for the Ca(2+) effect, the pharmacological profile and the Ca(2+) sensitivity of a series of GABA(B)R1 mutants were examined. The mutation of Ser269 into Ala was found to decrease the affinity of GABA, but not of baclofen, and the GABA affinity was found not to be affected upon Ca(2+) removal. Finally, the effect of Ca(2+) on the GABA(B) receptor function is no longer observed in cells coexpressing this GABA(B)R1-S269A mutant and the wild-type GABA(B)R2. Taken together, these results show that Ser269, which is conserved in the GABA(B)R1 protein from Caenorhabditis elegans to mammals, is critical for the Ca(2+)-effect on the heteromeric GABA(B) receptor.


Assuntos
Cálcio/metabolismo , Receptores de GABA-B/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Dimerização , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Ratos , Receptores de Detecção de Cálcio , Receptores de Superfície Celular/química , Receptores de GABA-B/genética , Receptores de Glutamato Metabotrópico/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
19.
Neuron ; 28(2): 475-84, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11144357

RESUMO

Kainate receptor activation affects GABAergic inhibition in the hippocampus by mechanisms that are thought to involve the GluR5 subunit. We report that disruption of the GluR5 subunit gene does not cause the loss of functional KARs in CA1 interneurons, nor does it prevent kainate-induced inhibition of evoked GABAergic synaptic transmission onto CA1 pyramidal cells. However, KAR function is abolished in mice lacking both GluR5 and GluR6 subunits, indicating that KARs in CA1 stratum radiatum interneurons are heteromeric receptors composed of both subunits. In addition, we show the presence of presynaptic KARs comprising the GluR6 but not the GluR5 subunit that modulate synaptic transmission between inhibitory interneurons. The existence of two separate populations of KARs in hippocampal interneurons adds to the complexity of KAR localization and function.


Assuntos
Hipocampo/metabolismo , Interneurônios/metabolismo , Subunidades Proteicas , Receptores de Ácido Caínico/metabolismo , Animais , Células Cultivadas , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Ácido Caínico/metabolismo , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Fármacos Neuromusculares Despolarizantes/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de Ácido Caínico/deficiência , Receptores de Ácido Caínico/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Receptor de GluK2 Cainato
20.
Neuropharmacology ; 38(11): 1641-6, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10587079

RESUMO

Since the discovery that the most abundant inhibitory neurotransmitter in the mammalian brain, GABA (gamma-aminobutyric acid), interacts not only with ionotropic GABA(A) receptors, but also with metabotropic GABA(B) receptors (Bowery et al., 1980) much work has been devoted to the elucidation of the structure of GABA(B) receptors by either affinity chromatography purification or by expression cloning. In 1997 Kaupmann et al. succeeded in cloning two splice variants designated GABA(B) R1a (960 amino acids) and GABA(B) R1b (844 amino acids). Although the amino acid sequences are now known, precise information on the three-dimensional environment of the GABA(B) R1 binding site is still lacking. Recent experiments demonstrated that the amino acids of the seven transmembrane helices are not essential for ligand binding as a soluble GABA(B) receptor fragment is still able to bind antagonists (Malitschek et al., 1999). For the isolation and purification of the soluble N-terminal extracellular domain (NTED) of GABA(B) receptors potent ligands for affinity chromatography were synthesised with the aim of obtaining a crystalline receptor fragment-ligand complex for X-ray structure determination. The most promising ligand [125I]CGP84963 (K(D) = 2 nM) combines, in one molecule, a GABA(B) receptor binding part, an azidosalicylic acid as a photoaffinity moiety separated by a spacer consisting of three GABA molecules from 2-iminobiotin, which binds to avidin in a reversible, pH-dependent fashion.


Assuntos
Benzoatos/metabolismo , Antagonistas GABAérgicos/metabolismo , Compostos Organofosforados/metabolismo , Receptores de GABA-B/metabolismo , Animais , Benzoatos/química , Benzoatos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cromatografia de Afinidade , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/farmacologia , Ligantes , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Ratos , Receptores de GABA-B/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...